## Factorization of 18

Input interpretation factor | 18 Prime factorization 2×3^2 (3 prime factors, 2 distinct) Divisors 1 | 2 | 3 | 6 | 9 | 18 (6 divisors)

Category: factor

Input interpretation factor | 18 Prime factorization 2×3^2 (3 prime factors, 2 distinct) Divisors 1 | 2 | 3 | 6 | 9 | 18 (6 divisors)

Input interpretation factor | 10&45 Prime factorization 8 = 2^3 (3 prime factors, 1 distinct) Divisors 1 | 2 | 4 | 8 (4 divisors)

Input interpretation divisors | 225 Divisors 1 | 3 | 5 | 9 | 15 | 25 | 45 | 75 | 225 (9 divisors) Prime factorization 225 = 3^2×5^2 (4 prime factors, 2 distinct)

Input interpretation divisors | 68 Divisors 1 | 2 | 4 | 17 | 34 | 68 (6 divisors) Prime factorization 68 = 2^2×17 (3 prime factors, 2 distinct)

Input interpretation divisors | 108 Divisors 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | 27 | 36 | 54 | 108 (12 divisors) Prime factorization 108 = 2^2×3^3 (5 prime factors, 2 distinct)

Input interpretation divisors | 72 Divisors 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 | 36 | 72 (12 divisors) Prime factorization 72 = 2^3×3^2 (5 prime factors, 2 distinct)

Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4

Input interpretation factor | 125×3×1 Prime factorization 375 = 3×5^3 (4 prime factors, 2 distinct) Divisors 1 | 3 | 5 | 15 | 25 | 75 | 125 | 375 (8 divisors)

Input interpretation factor | 125×3×216 Prime factorization 81000 = 2^3×3^4×5^3 (10 prime factors, 3 distinct) Divisors 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 15 | 18 | 20 | 24 | 25 | 27 | 30 | 36 | 40 | 45 | 50 | 54 | 60 | 72 | 75 | 81 | 90 | 100 | 108 | 120 | 125 | 135 |…

Input interpretation factor | 125×3×27 Prime factorization 10125 = 3^4×5^3 (7 prime factors, 2 distinct) Divisors 1 | 3 | 5 | 9 | 15 | 25 | 27 | 45 | 75 | 81 | 125 | 135 | 225 | 375 | 405 | 675 | 1125 | 2025 | 3375 | 10125 (20 divisors)