Factorization of 18
Input interpretation factor | 18 Prime factorization 2×3^2 (3 prime factors, 2 distinct) Divisors 1 | 2 | 3 | 6 | 9 | 18 (6 divisors)
Input interpretation factor | 18 Prime factorization 2×3^2 (3 prime factors, 2 distinct) Divisors 1 | 2 | 3 | 6 | 9 | 18 (6 divisors)
Input interpretation divisors | 225 Divisors 1 | 3 | 5 | 9 | 15 | 25 | 45 | 75 | 225 (9 divisors) Prime factorization 225 = 3^2×5^2 (4 prime factors, 2 distinct)
Input interpretation divisors | 68 Divisors 1 | 2 | 4 | 17 | 34 | 68 (6 divisors) Prime factorization 68 = 2^2×17 (3 prime factors, 2 distinct)
Input interpretation divisors | 108 Divisors 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | 27 | 36 | 54 | 108 (12 divisors) Prime factorization 108 = 2^2×3^3 (5 prime factors, 2 distinct)
Input interpretation factor | 10&45 Prime factorization 8 = 2^3 (3 prime factors, 1 distinct) Divisors 1 | 2 | 4 | 8 (4 divisors)
Input interpretation divisors | 72 Divisors 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 | 36 | 72 (12 divisors) Prime factorization 72 = 2^3×3^2 (5 prime factors, 2 distinct)
Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4
Input interpretation factor | 14 a (7 b) Result 98 a b
Input interpretation factor | (16 n)×2×9 Result 288 n Values n | 1 | 2 | 3 | 4 | 5 288 n | 288 | 576 | 864 | 1152 | 1440 Factorizations over finite fields GF(2) | 0
Input interpretation factor | 16×2 Prime factorization 32 = 2^5 (5 prime factors, 1 distinct) Divisors 1 | 2 | 4 | 8 | 16 | 32 (6 divisors)