## Factorization of 18

Input interpretation factor | 18 Prime factorization 2×3^2 (3 prime factors, 2 distinct) Divisors 1 | 2 | 3 | 6 | 9 | 18 (6 divisors)

Category: factor

Input interpretation factor | 18 Prime factorization 2×3^2 (3 prime factors, 2 distinct) Divisors 1 | 2 | 3 | 6 | 9 | 18 (6 divisors)

Input interpretation divisors | 225 Divisors 1 | 3 | 5 | 9 | 15 | 25 | 45 | 75 | 225 (9 divisors) Prime factorization 225 = 3^2×5^2 (4 prime factors, 2 distinct)

Input interpretation divisors | 68 Divisors 1 | 2 | 4 | 17 | 34 | 68 (6 divisors) Prime factorization 68 = 2^2×17 (3 prime factors, 2 distinct)

Input interpretation divisors | 108 Divisors 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | 27 | 36 | 54 | 108 (12 divisors) Prime factorization 108 = 2^2×3^3 (5 prime factors, 2 distinct)

Input interpretation factor | 10&45 Prime factorization 8 = 2^3 (3 prime factors, 1 distinct) Divisors 1 | 2 | 4 | 8 (4 divisors)

Input interpretation divisors | 72 Divisors 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 | 36 | 72 (12 divisors) Prime factorization 72 = 2^3×3^2 (5 prime factors, 2 distinct)

Input interpretation factor | -1 + x^4 Irreducible factorization (x – 1) (x – i) (x + i) (x + 1) Factorizations over finite fields GF(2) | (x + 1)^4

Input interpretation factor | 12×2 (17×6) Prime factorization 2448 = 2^4×3^2×17 (7 prime factors, 3 distinct) Divisors 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 16 | 17 | 18 | 24 | 34 | 36 | 48 | 51 | 68 | 72 | 102 | 136 | 144 | 153 | 204 | 272 | 306 | 408 | 612 | 816 | 1224 | 2448 (30 divisors)

Input interpretation factor | 12×2 (5×2) Prime factorization 240 = 2^4×3×5 (6 prime factors, 3 distinct) Divisors 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 15 | 16 | 20 | 24 | 30 | 40 | 48 | 60 | 80 | 120 | 240 (20 divisors)

Input interpretation factor | 14 a (7 b) Result 98 a b