# Cotxsecx

Input |
---|

cot(x) sec(x) |

Result |

csc(x) |

Alternate form assuming x is real |

-(2 sin(x))/(cos(2 x) – 1) |

Roots |

(no roots exist) |

Series expansion at x=0 |

1/x + x/6 + (7 x^3)/360 + (31 x^5)/15120 + O(x^6) (Laurent series) |

Derivative |

d/dx(cot(x) sec(x)) = -cot(x) csc(x) |

Indefinite integral |

integral csc(x) dx = -log(cot(x) + csc(x)) + constant |

Local maxima |

max{cot(x) sec(x)} = -1 at x = 2 pi n – pi/2 for integer n |

Local minima |

min{cot(x) sec(x)} = 1 at x = 2 pi n + pi/2 for integer n |