8x + 3y + 67

8x + 3y + 67

Input
8 x + 3 y + 67
Geometric figure
plane
Real root
y = -(8 x)/3 – 67/3
Root
y = -(8 x)/3 – 67/3
Integer root
x = 3 n + 1, y = -8 n – 25, n element Z
Root for the variable y
y = 1/3 (-8 x – 67)
Derivative
(d)/(dx)(8 x + 3 y + 67) = 8
Indefinite integral
integral (67 + 8 x + 3 y) dx = 4 x^2 + 3 x y + 67 x + constant
Definite integral over a disk of radius R
integral integral_(x^2 + y^2
Definite integral over a square of edge length 2 L
integral_(-L)^L integral_(-L)^L (67 + 8 x + 3 y) dy dx = 268 L^2

Leave a Reply

Your email address will not be published. Required fields are marked *