# (3x-2y4)-3 =

Input |
---|

(3 x – 2 y^4) – 3 |

Result |

3 x – 2 y^4 – 3 |

Polynomial discriminant |

Delta_y = -55296 (x – 1)^3 |

Integer root |

x = 54 n^4 + 1, y = 3 n, n element Z |

Derivative |

(d)/(dx)((3 x – 2 y^4) – 3) = 3 |

Indefinite integral |

integral (-3 + 3 x – 2 y^4) dx = (3 x^2)/2 – 2 x y^4 – 3 x + constant |

Definite integral over a square of edge length 2 L |

integral_(-L)^L integral_(-L)^L (-3 + 3 x – 2 y^4) dy dx = 2 L (-(4 L^5)/5 – 6 L) |